16.

BONE MARROW TRANSPLANTATION (BMT) IN FIRST REMISSION FOR CHILDREN AND ADOLESCENTS WITH ACUTE NON-LYMPHOCYTIC LEUKEMIA (ANLL). N. Ramsay, M. Nesbit, T. Kim, W. Woods, P. McGlave, W. Krivit, D. Hurd, J. Kersey for the University of Minnesota BMT Team, Minneapolis, Minnesota, U.S.A.

A study of BMT for patients (pts) with ANLL in first remission was initiated at the University of Minnesota in 1976. Nineteen pts., < 19 years received a BMT from a sibling matched at the major histocompatibility complex between 1976 and 1982. There were 8 males and 11 females, ages 1-17 years (median 11.5 years). All pts. had completed induction therapy and were in complete remission at the time of BMT. Pts. were transplanted from 2-8 months (median=4 months) following diagnosis. The preparative regimen for transplantation was and were in complete remission at the time of BMT. Pts. were transplanted from 2-8 months (median=4 months) following diagnosis. The preparative regimen for transplantation was cyclophosphamide 60 mg/kg/day x 2 days followed by total body irradiation (750 rad at 26 rad/minute). Pts. received from 1.5-8.2 x 108 nucleated donor cells/kg (median=3.7 x 108). Following BMT, methotrexate (13 pts.) or methotrexate, anti-thymocyte globulin and prednisone (6 pts.) was given for graft-versus-host disease (GVHD) prophylaxis. GVHD occurred in 9 pts. Seven pts. had acute GVHD; of these, two died prior to 100 days after BMT, two pts. had progression to chronic GVHD and two pts. had only chronic GVHD. Three pts. have relapsed at 6, 25 and 27 months. Five pts. have died (relapse-2; infection-2; GVHD-1) and 14 pts. are currently alive from 1 month to 64 months (median 25 months). Kaplan-Meier analysis reveals a predicted disease-free survival of 77% at 1 and 2 years and 61% at 3 years. Recipient age, donor age, recipient sex, donor sex, sex match, presence of GVHD and time from diagnosis to transplant did not significantly correlate with outcome. By life table analysis, the absence of GVHD, however, (n=10) was associated with a better survival (9%), when compared with the survival of pts. (n=9) with GVHD (41%). BMT appears to be an effective treatment for ANLL in first remission.

BONE MARROW TRANSPLANTATION (BMT) FOR CHILDREN WITH STAGE IV NEUROBLASTOMA: A PILOT STUDY AT THE UNIVERSITY OF MINNESOTA. N. Ramsay, W. Woods, W. Krivit, T. Kim, J. Kersey, M. Nesbit for the University of Minnesota BMT Team, Minneapolis, MN, USA. Long term survival for patients (pts.) with Stage IV neuroblastoma treated with conventional chemotherapy remains very poor. A program of early BMT for these pts. was instituted at the University of Minnesota in 1981 to improve survival. An attempt was made to render the pts. disease-free as soon as possible after initial diagnosis prior to BMT, using chemotherapy, surgery, and radiation therapy. The characteristics of the three pts. transplanted are outlined in the following table: in the following table:

Age/Sex Stage/Extent of Disease

Patient #1
4yr.4mo./male Patient #2
4yr.9mo./male Stage IV Abd mass

Bone marrow

Stage IV

Stage IV Retroperitoneal Abd mass, bone mass. Bone marrow Bone marrow

Time from Dx

7 mos to BMT/Type Autologous Allogeneic

11 mos

Patient #3 4yr.10mo./male

At initial diagnosis, all pts. had received multiagent chemo-therapy, followed by delayed surgical removal of the primary. Two pts. received post-operative abdominal radiation. Two two pts. received post-operative abdominal radiation. Iwo pts. were in complete remission and 1 pt. was in partial remission at the time of BMT. All pts. received a preparative regimen consisting of vincristine 1.5 mg/m² on day -9, cyclo-phosphamide 60 mg/kg days -8 and -7, melphalan 180 mg/m² on day -2 and 750 rad total body irradiation day -1. All three pts. engrafted and two pts. are surviving disease-free at 4.5 (allogeneic) and 6 (autologous) months after BMT. One pt. died of CMV pneumonitis. These results suggest that BMT, which allows the use of high dose chemotherapy and radiation therapy may be a useful initial therapeutic modality in Stage IV neuroblastoma.

PREVENTION AND TREATMENT OF ACUTE GRAFT-VERSUS-HOST DISEASE -BALTIMORE EXPERIENCE Tutschka, PJ. Marrow Transplant Program, Oncology Center, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Beltimore, Maryland 21205 USA.

The strength and kinetics of acute GVHD are thought to be a direct function of the degree of histoincompatibility between donor and recipient. To prevent GVHD, donor and host are commonly matched at the major histocompatibility complex, and are given low doses of cytotoxic agents (Methotrexate or

Cyclophosphamide) for prolonged periods after grafting. Despite that, acute GVHD of clinical significance was seen in 57.5% of our patients with a 68% GVHD related mortality. Acute GVHD of clinical significance (grade 2 or above) responded poorly to therapy. If anti-thymocyte globulin (ATG) was given, 54% of patients responded but only 9% survived. was given, 34% of patients responded but only 9% survived. If prednisone was given in various dose regimens, (2.5, 5, 10, 20 mg/kg/day) between 33% and 59% responded, but higher doses (10 and 20 mg/kg) were associated with serious toxicities, the best regimen being 2.5 mg/kg/day (59% response, 54% survival). Attempts to improve the prophylaxis of GVHD by incubating donor bone marrow with highly purified ATG have so far not been successful. Of 10 patients treated with marrow incubated with heterologous ATG, five developed clinically incubated with heterologous ATG, five developed clinically significant GVHD. It is hoped that incubation with monoclonal antibodies will improve this result. Cyclosporin A (CsA), a new immunosuppressant that prevents GVHD in animal models by impairing the generation of killer cells yet permitting the generation of suppressor cells, was used as single agent post-grafting to prevent GVHD. In a pilot trial of 22 patients, GVHD occurred in 36% with an overall GVHD associated mortality of only 14%. However, renal failure was encountered frequently, giving CsA a narrow therapeutic range. To improve this range, studies are in progress which combine CsA in lower doses with other immunosuppressive agents.

19.

AUTOLOGOUS BONE MARROW TRANSPLANTATION: AN OVERVIEW WITH AUTOLOGOUS BONE MARKOW TRANSPLANTATION; AN OVERVIEW WITH EMPHASIS ON THE PROBLEM OF TUMOR CELL CONTAMINATION OF REMISSION MARROW. H.Kaizer¹, R.K.Stuart¹, O.M.Colvin¹, R.Levy², and G.W.Santos¹. The Johns Hopkins Oncology Center¹, Baltimore, Maryland 21205, and Stanford University School of Medicine², Palo Alto, California 94305, U.S.A.

Based on currently available information, leukemia and lymphoma are the malignancies most likely to benefit from autologous bone marrow transplantation (ABMT). Successful application of this approach, particularly in acute leukemia, depends on the development of methods to eliminate all clonogenic tumor from the remission marrow to be used for transplantation. Animal model studies have shown that it is feasible to eliminate all clonogenic tumor from marrow-tumor cell mixtures by in vitro pharmacologic or immunologic treatment. We are currently conducting two clinical trials utilizing in vitro treatment of autologous marrow from patients with Tcell leukemia and lymphoma with a monoclonal anti-T-cell antibody and 4-hydroperoxycyclophsphamide (4HC) treatment of remission marrow in patients with non-T-cell ALL and ANLL. Only 1 out of 24 patients treated on these protocols has had a transplant-related fatality. The <u>in vitro</u> treatment of marrow has not significantly affected the pattern or rate of hematologic reconstitution. One surprising result of these studies is the observation that all assayable granulocyte and macrophage colony forming cells may be eliminated with 4HC treatment without detectable effect on hematologic recon-It is too early to assess the therapeutic effistitution. cacy in either of these two trials.

Supported in part by DHHS grants CA 06973, CA-15396, and a grant from the W.W. Smith Charitable Trust.

PHARMACOLOGICAL MEAN TO ELIMINATE TUMOR CELLS FROM BONE MARROW WITH A VIEW TO AUTOLOGOUS BONE MARROW GRAFT -P. Henvel, E. Tamayo', E. Plouvier, A. Noir, -1. Regional Blood Transfusion Center -2. Pediatrics oncology department -Besançon - France

Besançon - France The danger of regrafting residual leukemic or tumor cells
remains the first argument against ABMT.

A new approach is that of ABMT with in vitro elimination of
residual malignant cells from the marrow harvested.
We have studied one metabolite of cyclophosphamide (N. BROCK,
Asta Lab.): the 4-Hydroperoxycyclophosphamide (4-HC). We
have tested this analogue of Cy with marrow samples taken in
12 acuse leukemias patients in remission (table 1).

The bone marrow of nine children (6 acute leukemias, 2 NH lymphomas, 1 solid tumor) have been harvested and treated by this pharmacological mean. Just after collection the marrow was concentrated either with Haemonetics M30 or more recently with IBM 2991 blood cell processor. The marrow cells of each of them have been incubated with the dose of 4-HC previously determined in with a days to each of acts. viously determinated in in vitro assays. According to each